CP, CKM, Electroweak Model, QCD and Cross Sections

Wei-Ming Yao(LBNL)
PDG Advisory Meeting

LBNL, Sept. 24, 2004

- Electroweak Model and Constraints on New Physics (Rev) J. Erler(U. Mexico) and P. Langacker (U. Penn)
- Quantum Chromodynamics (Rev) I. Hinchliffe (LBNL)
- Cross-Section Formula for Specific Processes (New) R. Cahn (LBNL)
- CP Violation in Meson Decays (Rev) D. Kirkby (UC Irvine) and Y. Nir(Weizmann Inst.)
- The CKM Quark-Mixing Matrix (New) A. Ceccucci(CERN), Z. Ligeti(LBNL), Y. Sakai(KEK)

Overseers:

M. Barnett and W. Yao

General Remarks

- These are important reviews and have been with RPP for many editions
- Authors have done an excellent job to keep the content current.
- All reviews are sent out to a few referees for comments for every edition.
- The refereeing is an open process where the names of the referees are known to the authors and direct correspondence is encouraged.
- Last year, following the PDG advisory committee's recommendation, we have successfully commissioned the new CKM review from scratch with complete new set of authors.
- The only issue we have is that these reviews are too long to fit in the booklet.
- This year, we have to cut these reviews very hard for the booklet.
- If nobody complains, the solution would be permanent.

Electroweak Model and Constrains on New Physics

Introduction

Renormalization and radiative corrections

Cross-section and asymmetry formulas

- ullet W and Z decays
- Experimental results
- Constrains on new physics

• $M_H = 89^{+38}_{-28} \text{ GeV/c}^2 \text{ or } 114.4 < M_H < 191 \text{ GeV/c}^2 \text{ at } 95\% \text{ C.L.}$

Quantum Chromodynamics

- The QCD Lagrangian
- The QCD coupling and renormalization scheme
- QCD in deep-inelastic scattering
- QCD in decays of the au lepton
- QCD in high-energy hadron collisions
- QCD in heavy-quarkonium decay

- Perturbative QCD in e^+e^- collisions
- The QCD coupling and renormalization Scaling violation in fragmentation functions
 - Photon structure functions
 - ullet Jet rates in ep collisions
 - QCD in diffractive events
 - Lattice QCD
 - Conclusions

- $\alpha_s(M_Z) = 0.1176 \pm 0.002$
- ullet Clearly shows the experimental evidence for $lpha_s$ running

12.81

0

Cross-Section Formula for Specific Processes

Resonance Formation

- Production of Higgs Bosons
- Production of light particles
- Resonant Production
- Production of Weak Gauge Bosons
- Higgs Boson Production in W^{\ast} and Z^{\ast} decay

Inclusive hadronic reactions

- W and Z resonant production
- W and Z Fusions

- Production if pairs of weak gauge bosons

Two-photon processes

- Following the PDG advisory committee's recommendation, we have implemented some of suggestions, but not all.
- The author feels strongly that the formula should be focused on the standard model processes, not hypothesized ones.
- We may have to find a co-author who is familiar with SUSY and willing to work on the missing pieces.

CP Violation In Meson Decays

- Introduction
- Formalism
 - Charged- and neutral-meson decays
 - Neutral-meson mixing
 - CP-violating observables
 - Classification of CP-violating effects

- Theoretical Interpretation:
 - General Consideration
 - The KM Mechanism
- K Decays
- D Decays
- \bullet B and B_s Decays
- Summary and Outlook

- Excellent review for CPV physics
- Minor reversion this time

The CKM Quark-Mixing Matrix

- Introduction
- Magnitudes of CKM elements
 - $|V_{ud}|, |V_{us}|$
 - $|V_{cd}|, |V_{cs}|$
 - $|V_{cb}|, |V_{ub}|$
 - $|V_{td}|, |V_{ts}|, |V_{tb}|$
- Phases of CKM elements
 - $-\epsilon,\epsilon'$
 - $-\beta/\phi_1$
 - * Charmonium modes
 - * Penguin dominated modes

- Phases of CKM elements (Cont')
 - $-\alpha/\phi_{2}$ $*B \to \pi\pi$ $*B \to \rho\rho$ $*B \to \rho\pi$ $-\gamma/\phi_{3}$ $*B^{\pm} \to DK^{\pm}$ $*B \to D^{(*)\pm}\pi^{\mp}$
- Global fit in the Standard Model
- Implications beyond the SM
- The authors have written most comprehensive review of CKM elements to date.
- The referee's comments are positive with some suggestions which the authors implemented.

CKM Fit

